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40 Introduction

In the preceding work)what bounds were found were upper bounds. In
what follows we will be concerned with lower bounds. In Sec. 17, Part E
we already found a need for such bounds in order to get any bounds at
all on "Mixed second order properties'. More fundamentally, if we have
both upper and lower bounds we can make purely theoretical predictions
complete with * ervror.

Although lower bound formulae have been know for a long time, they

have not been extensively applied. The main reason 1is that many of

% & o O . §,we)
them involve calculating ELE C“”)“&"V) ((¢y$) (more precisely, ;""«%’} s
3

however we will make no distinction) which on the one hand is usually
. J
an unpleasant task and on the other hand tends to magnify errors in 4y
- - N - o
with the result that the same W will usually give a considerably poorer
lower bound than an upper bound, and thus give a wide gap between
upper and lower bounds - facts which of course discourage the calculation

of the lower bounds. However as computational techniques become more

powerful, interest in lower bound calculations seemfto be reviving.j;m

W;\ﬂ\ﬁ"%g@}ﬁwmf& Al W%\&Q ARVYALAL S NWAE~ \M“’j‘? NY MLany &ﬁ@j L{b H/\;L.g \l\/ﬁf\l-@_,;

41, The Weinstein-MacDonald Bracketing Theorem

Given a real number @ there will be some eigenvalue of H  to
which it will be closest. Let us denote this eigenvalue by Es . Then

v
clearly (Problem: Show this) for any ¥
L@‘)m~a)z€r"3/(¢)¢3 7 (B, —atY7 (41-1)

(The possibility that of lies midway between two eigenvalues can be

considered as a limiting case and causes no difficulty.)
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O

EY -l T o™ W (En~ AV
(41-2)
which implies that
“““ e ;
— V&Y L asa” £ La-ary £ \lgium%”%«w’
or finally
e N CaaErer & B, & Wy V& i e B (41-3)

This is the basic result. It is due to Weinstein (Proc. Nat. Acad.
Sci. 20, 529 (1934)) who discussed the choice ol= 4 in detail, and
to MacDonald, (Phys. Rev. 46, 828 (1934)). One way to read it is as

a 'bracketing theorem'' - that is it says that there is an eigenvalue of
%% between the limits indicated so that given any ‘%‘ and any o one
will bracket some eigenvalue of %% in this way. However in order to

say that it is precisely the n~th eigenvalue which is bracketed we

must evidently also know that

Beey Emo 0 w4 o g, (41-4)

e

T

’,47
4 ) . . . e s - ) \
A point of notation: In what follows &y, will denote the

ground state. One may then check that in all formulae it will

be consistent to put

EZ@ = == 0 {(41~5)
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Ems,

One further point: Clearly in (41-4) we can replace by

the energies of those states closest to ™ whose wave functions

are not orthogonal to “ . In particular if VW is symmetric

and E; has a definitg symmetry then n-1, n, ntl can be taken
\x\as the successive levels of that symmetry. //

Some applications of this bracketing theorem have been made.
In particular J. Goodisman, J. Chem. Phys. 47, 5247 (1967), in a paper
which also contains reference to earlier work, has made the Weinstein

7
choice =18 so that (3) becomes

T - Vev_ 7 tenwter NEi_g~ (41-6)

il X e
and “then determined an optimal trial function by minimizing & —&

thereby minimizing the difference between the upper and lower bounds.
(Note that even if the space of trial functions is linear this leads to
a non—-linear problem). We refer the reader to his paper for details
and for some numerical results. We now turn our attentions to another
use for (3) and (4) - namely as a $6urce of separate upper and lower

bounds, ,We will first discuss lower bounds.

Gor Iprespie Shakes D |
ENeeyy ~y .,

/ Minimizing the ''variance' BEL_E" has been suggested on
other grounds by several authors as an alternative to the usual
variational method for determining a best wave function. For
a further discussion and referencebsee the paper by Goodisman
mentioned above and also his earlier paper J. Chem. Phys. 45,
3659 (1966). Also mention should be made of the papers of
Frager and Birss, J. Chem. Phys. 40, 3207 and 3212 (1964) in

§§§which an SCF scheme is developed on the basis of (6). //
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Lower BRound

We first note that the left hand inequality in (41-3) will remain
an inequality even if we ignore the left hand inequality in (41-4),
i.e. if we require only that
of & Em i Ewn (42-1)

<

e

N

since this is alveady sufficient to ensure that the elgenvalue to which
o is closest is certainly 4% . and since the 1.h.s. of (41-3) will

be less than or equal to that eigenvalue, it will necessarily also be

é €4 . Thus we have Prab lg 0y G gg&WEF?*Q oo
L . ; o Aur . ; .
=) ky = o — N R R S N & B
(=P 3 \‘i & el ' o R (42~2)

We now note (Stevenson and Crawford, Phys. Rev. 54, 375 (1938)) that

the derivative with respect to ¢ of 1.h.s. of (2) can be written as

v _ (ot &)
2, o = (TV,, [ 2 -
\g -V e E” — €
} . A ,
which, since ¥~ =& ™19 , is positive. Hence to get a best

lower bound one tries to choose OL as large as possible consistent

o
with (1). Having chosen 0 , one may simply use a given Y to compute

A
a lower bound or one may choose that ¥ from among a set of trial
e 4 I,
functions which minimizes B — 1A & (Note that if the space of

tyial functions is limear this leads to a linear problem). Calculations
of this sort for simplg model problems and for’%@vg electron problems

can be found in the following references
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Stevenson and Crawford, Phys. Rev. 54, 374 (1938)
Kinoshita, Phys. Rev. 115, 306 (1969)

Caldow and Coulson, Proc. Camb. Phil. Soc. 57, 341 (1961)
Froman and Hall, J. Mol. Spe. 7, 410 (1961)

M. E. Schwartz, Proc. Phys. Soc. 90, 51 (1967)

Mazziotti, J. Chem. Phys, 50, 3330 (1969)

We will not attempt to present the results in any detail but only note
o
that in general it seems harder (one needs a more flexible set of & )

to get a good lower bound than to get a good upper bound.

43, The Temple-Kohn-Kato (TKK) Lower Bound

We now want to discuss the choice of ® in more detail. If one
has experimental information about E&m and €«#1 then one would
clearly put A= (B “E"’\%‘&/» and proceed as indicated in the
previous section. However clearly i such cases one is not really
interested in determining the energy, one already knows it, but in
determining an optimal wave function from among a set of trial functions,
o2 in testing a wave function found in some other way, for example from
the ordinary variational method, by comparing fiQ? with B,, or with
Y
= . However suppose one really wants to determine an E;k in an
gﬁingﬁio fashioni then how does one choose({ 7?7 Well we first note that

(=

v
G £ g,‘,\ and E-Mq are lower bounds to B, and ©ay resepctively

then (1) is certainly satisfied if

L&
O( § EM\ + £‘V\3~)
kg

(43-1)

L
Now let us suppose that we know g Ernsy from somewhere (experiment
ow one of the purely theoretical procedures which we will describe later)

then we can proceed as follows. Choose an o and calculate the l.h.s.
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of (42=2). Continuing to denote it by G t&} | though at this stage

we don't veslly know that it is a lower bound to &« , then we will

have consistency if

Y . LN
Q{’ @i gm (‘;\ } = é—‘”\r‘x 3
= / o (43-2)
-3

-5

nL" " ¢ Sy * §
and hence Bwl) will be s lower bound to . . Moreover it seems
clear that the best 8¢ we could choose in this way would be the one
for which the equality in (2) is wvealized. Denoting this value of

¢ o b o e
by o4 and &g (d) by Bw  we then have

® ® s La
of = Boa b ',
Ben
A % "~y eSS —— )
By = & \ S ol rar (43~4)

)

If now we imsert (3) into (%{59 transpose &{ to the left and square,

@
we can solve for E%:“ to find

) L nd =
E=1 (= gaw - BV .
&ﬂ s ™) E (42”_5)
L. g
Copgy - &
ot
A = e~ g
e = s (43-6)
\A, (a4

'

<

wever since we g@t this result by squaring, we must go back and check

that it is actually a solution of (4). One then readily sees that all
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S

is well (one need$ E%h»; d <yp ) if and only if

| - N
ferr _ & YO (43-7)
~
which provides an additional restriction, this time on & . Note

that from (2) this then implies

. g . b s
Ean & € £ B & &,.,, T

For the ground state this result is due to Temple (Proc. Roy. Soc.
A119, 276 (1928)). For arbitrary m it was first derived by Kohn (Phys.
Rev. 71, 902 (1947)) and independently by Kato (J. Phys. Soc. Japan
4, 334 (1949)). See also . Maehly (N. Cimento 8, 466 (1951)) . For an
interesting geometrical interpret’—‘ion see Washizu (Quart. J. Mech.

and Appl. Math. 8, 311 (1955)).

A

If we know that gm: is not only a lower bound to
Eswy but is also an upper bound to €  then the right
hand side of (6) is an example of a "Bracketing function' that
is we put in an upper bound to &~ (an upper bound which
also satisfies (5)) Awnd s 55 sl o lowtn bpund,
More generally as long as (7) is satisfied 21\\:) may be a
very poor lower bound to w4y and (6) still provides a
lower bound to &= . However we can be more precise if we
know that in fact 'bcy\ Sovv K & m

™

_ u s
Ewe & anq & ewrny Ve aan (43-9)

Namely the right hand side of (6) will then evidently be a
lower bound to ¥ (and hence, of course, to Ba ). /
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o
/ Problem: The pgowdureg outlined are not self contained.
One must supply @;%M "from outside'. Does the self contained
el y e g =] RYATY ,)
choice Ernsy == wd";k&} Y.2ad anywhere?

Problem: Given an Emg; show that one can use these proce~
dures to determine lower bounds for all &, with 4 g .

o
Problem: Prove that for any %% one has Q‘\%;C‘ﬁ»&,h)i_‘ﬁm}: bm} }Tﬁgj

\\jhow that this leads to (6) when (7) holds. e
To make more precise the sense in which the choice ©l= of
is a "best choice" consider what happens if one chooses . ''better"

value of o , namely

where

E,y}\ «\\} ~ WL

{ ¥ - b
so that o " o and hence is guaranteed to give a better bound.é?;;:

w‘\i\@% ’

' % e~
Y = o VER i we WY

—

Le isyeasy to show (Problem: Fill in the details) that
Y

3 [ ; '<
. L} . . ) N g é\, i _ ? b ar " b . E’
Em Tl = gﬁi}m;i;g»% - h "f}*ﬂ ;V“-M ) A C@V‘M ;J% )Ci A an ,f
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whowe® from (7) and (10) we see that
—u!
t:,";h - EML‘ <p

the lower bound that one gets out, although it is better than

@ H

m

e.
%; , is worse than the bound (namely f;&' ) that one puts in. Thus
the cholce ol=0ol is optimal insofar as one wants to use (43-2) to
estimate &m . To quote E. B. Wilson Jr. (J. Chem. Phys. 43, S 172
(1965) Footnote b) "If one knows a better value of 2;%“ in advance
there is no use in calculating a poorer value for the quantity." (Ses
also Schmid and Schweger, Z. fur Phys. 210, 309 (1968)).

One further point "in favor' of the choice o= al is that the

&
L .
resultant Swa involves only a second order error, i.e. ¢ = of

yields a variational bound. Thus writing

E§%: = L<§} W ( fhk?’“ \%)4¢3

(43-11)
(3 *]
O ) W W)
one readily shows that if
. ~
Y 2 TS AN
then
-
Eh . Ea 008T) (43-12)

4 N

Problem: Derive (12).
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analogous discussion of the general

bound Note the difference in the cases W™s Ea
and _Reconcile this result with (12). Hint: g
Show that § —Bw is a positive number plus terms of orderdy &

ﬁ‘@ﬁg\&g wa 6 ) o

Applications of the Temple bound to¥Helium may be found in
Wilets and Cherry, Phys. Rev. 123, 112 (1956), Kinoshita, Phys. Rev.
105, 1490 (1957), and in Pekaris, Phys. Rev. 126, 1471 (1962). In

e b Y

thgae calculations @z‘ was taken from experiment and ¥  was
taken from an ordinary variational calculation. In general, except for
the work of Pekeris, the quality of the results is poor =~ the gaps
between the upper and lower bounds are large and most of the authurgv
then supplement their calculations by various extrapolation precedures
with the hope of%ﬁetting a better answer. See for example Kinoshita,
also Conroy, J. Chem., Phys. 41, 1336 (1964). Applications to
and%%i4%ji with similar results can be found in Goodisman and Secrest
J. Chema Phys. 41, 3610 (1964); 45, 1515 (1966), and in Walmsley and
Coulson, Proc. Camb. Phil. Soc. 67, 769 (1966).

The Temple bound has also been used variationally. (Like the
Stevenson-Crawford method a linear space of trial functions leads fo &
linear problem which we will discuss in more detail in the next section.

[UEE .
For examples of V calculations for model problems and for re&@

one=and
two~electron problems see the last four references given at the end

of Sec. 42. For applications to nuclear physics see for example Tang
et al. Nuc. Phys. 65, 203 (1965). The quality of results is again much

ag indicated before - one must usually work harder to get a good lower

bound than a good upper bound.
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7 . :
We have been concerned mainly with these formulae as sources of

lower bounds for the energy. However if they are used variationally

then they also provide an optimal trial function and one might wonder

about the quality of that wave function. One point in this connection

is the following: Consider the TKK formulae and suppose that we take
L © )

for ggﬁ\ , its best value, namely A3y . Then from (11) we

~ > ®
immediately see that ¢ and Y ¥ € L‘t\’}m“\ yield the same El,; for

any number & . This degeneracy suggests that in general one need
~F
not expect an optimal %  to look much like L A (See also J.

Goodisman, Theoret. Chim. Acta 4, 343 (1966)). However, if in fact a
calculation yields degeneracy or near degeneracy (seweral solutions
L

with E%m 's wvarying within tolerable limits) then one could well

*§&35k for that solution which also yields the best upper bound. jf

44. The Lehmann-Maehly Bounds

If we insert a linear trial function

™
by O Ve
$= Z (44~1)
k=1
into the TKK bound and require that
e
D €&
" 2D (44-2)
9 O

we are led to the set of linear equations (Problem: Fill in the

details)

~1) ( élj;\rm 9) *P) GkF =9 (44-3)

g

Z (e, C&5
v
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and hence to the secular equation

o L. S . 4
i (Y, C fan =B ¥y )| =0 (44-4)

A L,
From which to determine & sa . In general (4) will have [} solutions
and, in accord with the discussion in the previous section, we would
chooge as the best approximation to Eiwkﬁthe largest root which has

the property that the associated Gy, vield
s\ g -
Ewiy 7 E (44-5)

From what we have asid so far, no interpretation can be given to the
other roots except that of course the smaller ones are also lower
bounds to Em .

It is now of interest to remark that there is another method for
finding bounds‘E}e will follow the discussion of H. S. Maehly, Helv.
Phys. Acta 25, 547 (1952). GEssentially the same results were found
earlier from a somewhat different point of view by N. J. Lehmann, Z.
Angew. Math. Mech. 29, 341 (1949); 30, 1 (1950). See also Washizu,

Q. J. Mech. and Appl. Math. 8, 311 (195521 which yields an interpreta-
tion for all the roots.

~1
The basic idea is as follows. Consider the operator Q H-e)

where & is a @epsl vumkey vhich we assume not equal to an eigenvalue of

N  CBxe e’ (44-6)
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whawee. we have

Spe &r+ >
S Ny (44~7)

CProvdl s Prow %}
Now the point is that the 5\&4 are bounded above and below\,’, Suppose

now we apply the ordinary linear va‘riatio:fl method with M  functions
to the operator C%}AC‘:’)A . Since the Aw are bounded below we
know from our previous work that we will get upper bounds to M
successive B\\A starting with the lowest. However since the AK are
also bounded from above one can also skow, by a slight extension of
our previous method, that we also get lower bounds to M successive

7\K starting with the highest. Suppose now that = is an ¥\ which

is less than & and lies within ™M eigenvaluesof & . Then since
Ceﬁéj" is € p it follows that the linear variational method
—
will yield an upper bound to (e— &) . Denoting the result of the

linear variational method by Cé‘“ &-)"" we then have
(é»ar“ > te—&) (44-8)
Now suppose that we also have
(g — &) <o

(44-9)

Then we can multiply (44-8) by Cg"e‘)(\;» &) which is 2o to find

E-~-& ¥ g -6

or

(44-10)
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On the other hand if & is within B4 eigenvaluefof & above £

£ u’;& Sy " "
then since (E~€&) 7g the linear variational method will yield
P
lower bounds to (€~ &) . Thus
-3 Ly
Whantif

(&-e> »o

(44-12)
so that ( g‘“‘é>u’3 —&) FD then we have
N
E—& X &6
or
v )
| S o (44-13)
Suppose now that in fact we find that
V V
By < & <&y, (44~14)

{hen it follows from the above that we get lower bounds for the 3

b2 \ww \ Lrapdagiah
levels,slsaxe & and upper boundsfor the M-y levelsVabove & .

1 savoshaglodn
Now we want to make contact with (4). If we simply apply the

linear variational method to (¥ — &) =3 then we are led to

F
| (o, Ton-er 53] <o o

Praseeny «?sz

s . , . . N V
which is usually not very tractable because of the inverse operator.
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However suppose that we write

D= Y-¢) T‘L

then (Problem: Fill in the details) (15) is replaced by

i
\ C?L“) c\-}»e)C\#}AEY\%B\ = (44-16)
where
Vo T
B = &* ], (44-17)
E \-. A V4 ® L‘
which, if we identify & with TR ’and % with © 7, becomes

(4). But now we have an interpretation of all the roots. Namely

|8
suppose that {,,, satisfies
v

E %
1: J $ &Ly\-g_\ !1 E._“_l (\4\4_;“4
il (44-18)
A =L T Wi & @Nﬁ s 5‘;\*\ & Q"’ﬁ)#l £ -~ Ni=gq ===
fn s 2" : ¢ Then it follows from the preceding

discussion that

[7a

v
Ei Ewip L2\ yiamm ) (44-19)

mg
K

Z; QNQK W= 43y ~~ - b (44“20)

Note however that in order to make these precise statements we must
; . gb . :
know &N , i.e. we must know precisely where A lies with respect

. 2k
to the Eb . If all we know is that &mnyn is a lower bound to Enis
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then the moa?&e can say is that
7

Vv

¢ E b=

I

¢ 12- -y (44-21)

So far we seem to have made no contact with (5). We will now

% Q
show that condition (5) is in fact equivalent to (14) which defines §

Namely we clearly have (;?:gﬁkuwsf Qe W)

#
Sor = Nc, m%w D

et (44-22)
C\)(gg) {9 I ey’ “'3( >

M

where “X¢ is the appropriate linear combination of the b?iq . Bur

then from (22) and (17) one readily finds that

3 (44~23)
O | Ce-w) X))
From which it follows that
. P4 v v
G- €¢ Yo on & — (g BYs) - (44~24)

which proves the point

Further we can now recognize¥the result
~
l:k é" QM%i :M\Lw»‘“k‘?

va w@ P

N ’ I
which follows from (19) #s equivalent to our earvlier result (43




(44=25)
A

where the ©€¢ are the result of a linear variational calcula-
tion applied to ¥ , using the Y as a basis set. More

¢ 0 S _A’
1+ / . s
¢ g As outlined above, in order to find J one must first dy’cg
3 W ”}\ find the €¢ - ’ L - T a : +, ; .§p§'
g%\“ g In fact Maehly shows that this is not the casewv@NA'j'_)u{E
= U{ Namely he proves, and we Eefer the reader to his paper for
4? o details, that J o o P AR "“2
o i} A A
2 . ;e
X4 By s & < 3%
)
N
b

Dy R,

4 Cu-8) -0 ¢

TRV ST %&\4 rernaliisd il msginn = TeAN watn Gluerom , Tne

= precisely he shows that
R 45‘
2 w ~
: = ) 44-26
54 E. & B, Ry nn) (44-26)
5§ § ‘g
S . A A
= 74 - iy
3 %.é Ey 7 E AL A (L4-27)
L
E(’}‘;‘; which, combined with (14)) yields (25)
[T é % & S
3
g - % ;'\ One might expect that for a given basis set one would get
& ué "% S ;‘; the best lower bound for E‘,@ by having @ lie between Epso
2:!} & 5 - and Epsg rather than between some higher pairs. However
g 2”;71 from an examination of Figure One in Maehly's paper, it is
> §=£<§ @ clear that this is not necessarily the case. Qg Cam Srow e
a

BEL/e >0 bk b poio B Y ore Onangsd thew
‘ &L loundag Ayt %4 A, <o
B whda By bouw C}\Mb,,, Qv Aty NARus )
\\%09"‘”& Wy M- Pooem 'D)u:c_v% Ho Sadrvediow = W“Qr’/

45. The Upper Bound Formulae

Since the formal discussion here runs completely parallel to

that on lower bounds, we will not go into details. If one requires only

that

&N\-l A E $

22—

ol W

then we still have the upper bound formula

——

B . <« + VB s & aav (45-2)
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Since the right hand side of (2) is an increasing function of ® one
s & w e °
gets the best upper bound for a given W by making O, as small as
possible comsistent with (1). 1In particular for the ground state (recall
. =& —=cc0 ) this means 2= R whence it is easy to see
&
, i?
(Problem: Prove this), that the right hand side of (2) becomes &= ,
i.e. the familiar variational upper bound.
B
1f we put W= o where

LX) — I e O
of = é«v‘rmﬂ’\ + %:m (45-3)
2.

where és v is an upper bound to & .y and where
A =T

7 89

L3 .
B o= o 4 VEC 5T (45-4)

then one finds

Sy ﬁ\i/ Ao ¢
R = =& Cuns (45-5)
N
g - g/&am'\
or
w Ao la 4 z?‘v
g, = 8 ¥ EV-8 (45-6)
s
[ A
%?rovided that
(A

These results are due to Kohn (1947) and Kato (1949) (op. cit.). See

also Goodisman (Theoret. Chem. Acta. 4, 343 (1966)).
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S

/ Problem: Fill in the details of the derivation of (5) and (7) ‘

S\ i
Problem: Show that (\¥, O ~BaS(B —EnadY) 71D
Show that when (7) is satisfied then this implies (5).

by
Problem: Show that K= o is a "best choice" by
discussing what happens if one puts /= «?  where

. v
s B e B

- e i

’Z:—«,
e wi i, " s 5
a < E,
Problem: Show that %34« is a variational bound. /

e

Equation (5), with (7), ®¥em provides an alternative method, dif=
ferent from the linear variational method,."f—em getting upper bounds.
It has the advantage over the linear variational method that all one

v
needs is a w and an Em,_, satisfying (7), calculates a few integrals
a2
hdl
(but one of then is B ) and 0w g @ in — there are no secular equations
to solve. Note also that in contrast to the corresponding lower bound,
&
A¥]

it is potentially self contained. Given By (which, as we have seen is
best calculated from the usual variational principle) one can use this

U 2u
as 8, to calculate Ey etec. etc.

However in contrasting (5) with the linear variational method, the

NS
following remark should also be made. Suppose we take for ¥ the function
N
Ym - the n-th solution derived from a linear variational calculatipg
Y A

Since & ® Em  is an upper bound to Ew | (7) can easily be satisfied,
but then we see from (6) that

A
® v
E =~ =~ =

A
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i.e. in this case (5) gives a worse bound than the linear variational
method.

1
One can, of course, also use (5) variationally, i.e. given éimﬁ‘
ed

o
. - - . : PRI I o= U
choose a best % from a set of trial functions by minimizing &

s}
subject to (7). Calculations of this sort have been carrieé out hy

Goodisman, and by Goodisman and Secrest for ﬁ;% and for W, (J. Chem.

D

Phys. 43, 2806 (1965), J. Chem. Phys. 45, 1515 (1964) and Theoret. Chem.
Acta. 4, 343 (1966) with fair resulis. We refer the reader to their
paper for details and numbers.

An interesting question in this connection is the following: Suppose
we would use a linear space of trial functions, and suppose that we
would use the same set of functions in the linear variational method.
Which would yield the better results? Some calculations relevant to the
question are reported in the third reference above, which also gives some
general examples to show that sometimes (5) may be better. Thus consider
the first excited state and put EQJ = &, . Then suppose that the
basis set (unbeknowest to us) consists of ‘¥&g P s and‘%g where
o 1is a constant. Then clearly (Problem: Fill in the details) the
second root of the linear variational method will be ®3 while the lowest

Codnithy wiWh Ye comudied wiln €13}
root arising from (59iwill be E@; . Hence in this €&&¥ (5) is superiox.
However one can show (M. Barnsley; Private communication) that Vg one
u @ -V A ;

chooses ZQM‘ = Baos then B = , i.e. under these

circumstances the linear variational method will - be no worse and

will usually be better.
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/ - o

Problem: Suppose that one knows not only that Z an-\ is an
upper bound to Ew-1 but that in fact it lies between Sw-1 gnd B
whefa w2t . Show that then g¥% is an upper bound to i

Problem: Make detailed contast with the Lehmann-Maehly

procedure by looking at the details of what Rappins when one uses v
Ppu
\a linear space of trial functions and (5). \purds . /
o Aw SCRE Pavweduins \0.410 en Hho TWW 2OV '

(Y Raa M’@"L}A&HAZ}A" ‘,:‘;, Vo2~
%ﬁé‘%“ﬁg’@;&%ﬁ'w% L“"& 244y, T~ 5% » 2

46. Perturbation Theory — The Rebane Bounds

Partly to £ill the gap which we encountered in our discussion in
Sec. 17 Part E)but mainly simply to provide lower bounds to perturbation

energies,we will now comnsider the perturbation expansion of the TKK

3
upper and lower bounds Eqs. (43-6) and (45-5‘), which we will now write
is

~ N O~

E - g¥Y — & ‘gv (46-1)
I\ Af'

AN
m

3
I

e

+
M
<

{

/
where, from (43-7) and (45—7) /A and /\ are chosen as large as possible

consistent with

O<4NA & Epm— E (46-2)
and
0 < & ¢ E— Eun (46~3)

We now make a perturbation expansion of these results. Writing
(o) 1A
H= B 9™
(VN o) o)
Y =a eV -
- _. (o> E\.\(ﬂ g
§ L
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g W : - P
where dﬁfﬁ , which of course satisifes
W) o, W _ ey, @)
E;}’ﬂz, (S = Ew Y

XTPAYY

is normalized so that

0 )

B, = (WP

Inserting these expansions into the three members of (1) one then

. ) Y e
finds (A) that &Y - & is of second order in ¥  (B) that the

zero and first order terms are identical in the three members. Then

deleting these zero and first order terms, dividing by V7 and letting

L)

Y ~%p  we arrive at bounds for ©, 7/ . 1In detail they are (Problem:
Derive them)
A—- B ¢ eep B (46-3)
DY Zﬁib—?

where A 1is the familiar Hylleraas %uwdﬂ’%ﬁ@'\

Aa (§9) oy e ) + (8T e )
(46-4)

%‘ (Q(@\) ‘v}\ﬂ h\> ﬂ/}

and B is given by

B (@%‘ﬂ‘ ) ¥V e Q?}@») (99 €)% g el g 46-9)



A AN

Further, from (2) and (3) f}D) and /S"’) are restricted by
- i 2 i tv)
O<L N S Eap — Ean
(46~6)
o D \2)
@ < A L Ew 3 — E'w- Q\\j\gf-—’“()

&

élearly to get the best bounds one should use the largest valuesof FAY
M) ; g - ;

and A, consistent with these restrictions. Therefore if one knows

the positions of the zero order levels one should simply use

W) .~ B (112 .~ @)
dm.j Ew — & m and A7z BY— Enn For the ground state (7)
Vw) o ) , A :
yields 0 N whiwes choosing é = b (4) yields the

Hylleraas bound C ?»w\)\m_ 3 Pawve %“WQ)

N\

The loweg®R bound for the ground state was first given by Prager
and Hirschfelder, J. Chem. Phys. 39, 3289 (1963). The general
upper and lower bounds were first given by Rebane, Opt. Spectry.
21, 66 (1966), actually in a somewhat more general form to be
described below

N, gy,

Problem: By writing ¥ = Ya T ‘& &y, veri§=,y the
inequalities (4) dé)):ectly. Note that this will involve using
TKK bounds for Efm

Problem: Write out the equations that gwe gets by maximizing
(Minimizing) the lower (upper) bound (3) over a linear space
of trial functions. Show that the lower bound is the same as
that given by Miller, J. Chem. Phys. 50, 2758 (1969) Eq. (16).

Problem: Go one step further in thg{ perturbation expansion.
That is write & = Wal?% ¥V WD 42 W9 ps and
derive bounds on g ¥

4%

W)
A comment on notation. Evidently ©msa need not be the levels

immediately above and below W More precisely they are the
faesTlevels above and below Ew’ which can mix with Ww,%? in /

\first order.
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Although one can, by suitable reidentification derive the general
. - 7 (Y . N o . g § § -
Rebane bounds from L3/ we will not attempt to do so here (see the brief
remark below) but will merely state them

w (&)

Consider a quantityvof the form

geer = 7 10w o ¢V

(78 (46-7)

€
. Eiyf?
V&th suitable identification of U and of & this could be a second
order energy but it could also be a part of the frequency dependent
polarizibility. The Rebane result is then that

O — G 4 EM&%} ¢ Oy 0> (46-8)

o

%wb) ;%“w)

where
oy . el O 17 Ww ;™M
Q= % ol o5 ¢ + Vo) v Gyl Uty ) (46-9)
- R W By L
(3 = ( 4@ ey & Y Oy, ey o ) (46-10)

é}@% W)
and where and é% are restricted by

C‘J < {g\ﬂ? é E;D‘)“‘ é: (46_11)
o 2 &% e W (46-12)

) ) Ly
Ei@@% being that ©p which is immediately above & and ©_. being

3
Gal

= i) o ) L .
that =, which is immediately below € Evidently to get the best
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bounds one wants to choose élb) and SL(D) as large as possible consistent
with (11) and (12).
Applications of these results may be found in the following
references:
(i) Formal applications to various quantities of interest
(a) Probability of two photon emission and first order corrections
to matrix elements Braun and Rebane)Optic and Spectr. 22, 275
(1967).
See also Dwitriev and Yuriev, Int. J. W. Chem. 1, 321 (1967).
(ii) Numerical calcuations
(a) Static polarizibility of H atom,RebaneyOptic and Spec. 21,
66 (1966). |
(b) Dynamic polarizibility of H atomAdamov et alLEOptic and
Spec. 24, 353 (1968).
(Good agreement of upper and lower bounds for small & , poorer for
higher o )

(c) € for H-H,, Adamov et al;DInt. J. Q. Chem. 3, 57 (1969)

6

Here upper and lower bound agreed to 6 figures to the right of
the decimal point.
(d) Polarizibility of an §= center Adamov et al.XSO\L Phys.;Sol.

State 8, 2541 (1967).

/ vy { \%
Problem: Verify (8) by writing k* =X + etc. where

CH7_ e\ %A +L WD =0

-

We want to indicate here a connection between (3) and (8) for the

special case in which Cq%?z L)Kkg?‘)’=13 and in which L S
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Hermitian. Then the essential cobservation is thaﬁagN§&> has the form of a
second order energy with V' the perturbation for a problem in which

W
the zero order state is %, but in which the zero order Hamiltonian is

§ L T Cem mT)IT X

W) . R
so that the energy of Q% is Q“gbut so that the energy of‘%g?gggg
c o aaq e .
is still B , 1l.e.
{0 ~ &) 9., >
g’e/g@ﬁ}uﬁf 2~ b &%}M | ?(‘ )\%)K = E‘y@ QKA (Wit 2N

Thus depending on the value of & , L%Eﬁnmy be the ground state offéﬁ;
the first excited state etc. etc. If one now applies (4) to this new
problem, i.e. (4) with a suitable reinterpretation of the symbols, one
is led to (8).

Problem: Fill in the details

Problem: Show that applied to frequency dependent polarizibi-
lities below the first resonance the best upper bound from (8) )
§§§—is identical to the bounds found in Sec. 30. jf}

47, Operator Comparison Methods - Introduction

The basic theorem (due to Vﬁ@yl) is the following: Suppose that we

write our Hamiltonian k% as

s
T 1
B W (47-1)

where %% is a positive Hermitian operator, i.e.
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() & o v NG N i AN
(F, ¥ (&, %) o 0 (47-2)
=
One then says that Y , the "intermediate Hamiltonian") is less than
2 , or in symbols
X
+ < Y (47-3)
. i I,
Let us now denote the (ordered) descrete eigenvalues of H by E‘ 5
E-';: 5 E-{; . . . and continue to denote those of B by E\)E.‘,)A,ﬁ
Then one can show that
i
B, ¢ E. (47-4)

s ~
That is the E:, in order furnish lower bounds to the \’:L in order.

/ Problem: Derive (§) from the MAX MIN principle. \

——

If we write W = 4y where ‘H  is a negative
Hermitian operator then of course, in obvious notation, we will
have &g élE;_ , i.e. the 3&. in order furnish upper
bounds to the €: in order. :

i

/

As a trivial example we may take \%’ to be the coulomb interaction
between the electrons. Then the theorem says that the eigenvaluetof the
non“interacting electron problem yields lower bounds on the real problem.
However this particular lower bound is usually quite Cewde . Thus for

5
the Helium atom &= —Mone, while E{ ~ <3M am,
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However the example doad emphasize;that in contrast to the methods
discussed in the earlier seciions, the present approach is quite self
contained. The main problem in its implementation is to find %{l 's
which are on the one hand $olulsle so that one can explicitly exhibit the

E?l , or at least give a finite procedure for finding them, and which,
on the other hand give interestingly close bounds.

This technique of operator comparision was introduced into atomic and
molecular physics by Bazley (Phys. Rev. 120, 144 (1959)) based on earlier
work in a more general setting by A. Weinstein and N. Aronszajn. Bazley
and Fox and others have continued work on this and more general problems
and extensive reviews may be found in the book by (rould - "Variational
Methods for ¥¢ genvalue Problems'" and in two recent reviews, one by Fox
and Rheinboldt in Siam Review 8, 427 (1966) and another by Bagley and Fox
in J. Reine Angew. Math. 223, 142 (1966).

As we will discuss in a later section the %%‘iu's which have been
used by these authors in the atomic and molecular context are in L%zt
generalizations of the simple %¥iL we discussed above. Recently however
W. Miller (J. Chem. Phys. 50, 12758 (1969) has suggested a different‘ﬁji
which has very definite advantages over the previous suggestzons. Hence

we will discuss it first in some detail in the next section and then in

subsequent section$ will summarize the work of other authors.

i/Z note on the error in operator %pmparison methods: 1f we
denote the n=~th eigenfunction of W~ by k%j“ then our lower bound
can be written
I i .= » T I Y b
gh. (Wa, 9 %) o (9n, 9 4e) (49 0n)

(;Qt'% 3 ‘*%’1%15 (’R‘&’%‘w k:i”%“r) Ck;’v;’?:,« s ¥

|

7 v
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Now we know that the first term on the right hand side differs
from §. by terms of order (W, — q,‘i,y‘” so we have

E,;%: Em & @élf},) Cq’mn-g"f-)v)

48, The Miller Intermediate Hamiltonian

Our work on upper bounds for frequency dependent polarizibilities

in Sec. 30 can be summarized in the statement (see also Rosenberg et al.
A
Phys. Rev. 118, 184 (1960)) that if the ®: with L= j--. \.

are an arthonormal set of functions which diagonalize a Hermitian operator
ii_ (in our earlier work A  was the zero field Hamiltoni&n), the

(&Y
diagonal elements being G&u; , then

L A a
(h-e)" % L WRBREL oo

L= G, —&

(48-1)
A

:trovided that there are as many (ki, below € as there are eigenvalues

of A below € . Multiplying (1) from the right and the left by (A-¢)

we then have that
Ch-e) O CA—e) + &6 < A (48-2)

We now apply this general result as follows. First we split %%

according to

B= HoxV (48-3)

The special properties that we will require of @fp and V will be made

clear shortly. Now we apply (2) with f%t J{o to find that
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— & M e & AV =
(#Hy—&) O (Hy— &0 % (48-0)
where
M e 4
1= 7 (48-5)
T
N
{;j; there are as many 55:» below & as there are eigenvalues

of 3‘{@ . (In order to know this, of course, we must know something
about the spectrum of %@ . Hence this is a restriction on our choice
of %g ).
Evidently we can now use the /Qﬁ;fj’g hand side of (4) as our inter-
2 '} M
‘mediate Hamiltonian. We will denote it by %f{é)and we will denote its
eigenvaluet by N {&). We will now show that if WV is simply a functlon)
and most simply = a positive pv o T 1B though this can
- "M . ]
be relaxed, then we can find the E; (more precisely some of the %i )
. . L s .
by solving an ™M A™  matrix problem‘m\vsﬁ is a suitable intermediate
Hamiltonian in that it is soluble. Further it is AQ&MMAU7Clear that since
by increasing ™M we can approach arbitrarily close to completeness of the

#
£

basis function, (1) can come arbitrarily close to equality and the “¢ can
i
M
come arbitrarily close to EEL . Indeed one can prove that 5% e} ig
EYAL i
»’j( {é) if M ?M . Thus ?&{N is also suitable in that it can

give arbitrarily close bounds.

The eigenvalue problem forx g{ i is evidently

™M A A . (JM M .
£ A > N B { Z%8“6
Z (%0 "‘j & ,) (‘%F [@b‘ J ["g’éi &) k} ///} 4 { & %g E,,,sf "‘V"‘) g}x =) * )
= ;-;'l I;«( ¥

: £ — &

&
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Now if \/ is a positive function then even if it ¥AMgs from 0 to <0

|
still ( €= M av) will be well defined if

We now restrict ourselves to this case, (Thus we are finding only Hwie
gy \ealew €
Q—\SZV\VA-\VM cé é&mw,@\ b ) so that we can replace (6) by

™ " A A
LN 52;' Ce-eMv)  (H-e) e (4 /’}f’p»é/\f/m)

= (48-8)
(& — ¢)
Further since \/ is simply a function, th€ inverse operator is not
&\F{a-¢u\*=to deal with ;.wuui‘too is simply a function. If now we take
=, /‘ .
the scalat product of this equation with (Hp” &) % we find a set
of linear homogeneous equations for
M
\g'_ = (4):) (.'H’g" 6‘) Ly )

v A (48-9)

g — e

(%

In detail these equations are

L' 2% g (&
( 5\3 ~e) S, - _ 2 &, -0 (e- VS o (%Ae)c‘;){, (48-10)

v=)
3 P [
Whence we have as the equation to determine the § s

y 85 =\ o
\ ( By~ €) Siy + (o 3 (Hy—& € - ) mu,-&)q;)):o (48-11)
or

2; T (i, (Ry-eXe-T™ v)“A(x ,w}&)‘
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%§%
if; Equation (11 is special to the %, basis. However in the
form (12) it is immediately applicable to any basis L.
derived by a non-singular linear transformation of the ?@ 5
that is in an arbitrary basis we have 3

[ (Ly | T (Mp-> v CHy-6) (e~ E vy (ﬁy“‘&')jw,g‘})i@) (48-13)

Problem: Prove this. Hint: Recall that the determinant of a
product of matrices equals the product of the determinants.

N

Evidently even 1if Voois not positive, still it may be possible
that (&- g% %v)wﬂ exists and hence that the procedure can be )
carried through. See Wilson, J. Chem. Phys. 43, 5172 (1965) ﬁf

\\\for some examples of a similar situation.

Thus we have a finite procedure for producing arbitrarily good
. A
lower bounds to the E{‘ below € provided that there are as many ai
below & as there are eigenvalues of é%@ . Further it is not hard to
show that for a given basis set one will get the best bounds by taking

& as large as possible consistent with this requirement. Namely from

the Hellmann~Feynman theory applied toﬁe?% we have

@‘8% C%ﬂ Y AL /
e Ny f b R
Y § S ‘C)/ Ckﬁ/)\‘&/@,)

A short calculation then yields (Problem: Derive this).

IS
£ ~ A “ A
BAN s Guxd ) 4 2 (B0l Xt
' - - (E-e)”

whence clearly (Problem: Fill in the details).

@ E‘M,
O &

7> O
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We refer the reader to Miller's paper (J. Chem. Phys. 50, 2758 (1969)
for more details of the theory and for a successful application to

Helium.

N\

Miller also discusses the use of (2) with A‘:‘H‘ ) QLV;D 4

9new that the Qwéﬂqé of (12) is our old friend (44-16) and

that Miller's condition on € dimplies that # =0 in (44-18).

Show further from (44-6) that although the roots which are >€,

roots which the Miller method does not interpret (for '¥=©

one cannot use (47-4) to conclude anything about the &m '

for &a 7€ because &"=& is am infinitely degenerate

eigenvalue of 4™ ), can now be seen gs upper bounds, they are

in fact worse than the corresponding &

=

™
The results of applying perturbation theory to L
have already been mentioned in a problem following Eq. (46-7).
In essence one finds the Rebane bound. !/

49. Summary of Work with Other Comparison Hamiltonians

Vi s . s >
Assuming that \J is positive (though it need not be simply a
N
function) one can introduce AV , the N-th order truncatien of \Y} 3
according to

W T X W

W=y

where the \gk are some discrete orthonormal bases sek. Evidently

(Problem: Prove this).

al .
Ve vV 2NV (49-2)

- -

uﬂo’i’\lw

From (2) then an obvious choice for an intermediate HamiltonianV

How—
ever in general one cannot find its eigenvalues in a finite way. An

exception occurs if g@ ng, can be written as a finite sum of the
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discrete eigenfunction of é%g . Under these circumstances, as shown
by Bazley (Phys. Rev. 120, 144 (1960) and we refer the reader to his
papers for details of the general theory and for the resylts of an

oee Cond aod e 2tavalves et Heot V N
A%}&MAA;atO Heliud} The weakness of the method is that usually the
Ao ,
discrete eigenfunctionsYare not complete whence theiv¥ﬂﬂwﬁxon theq§‘§k
will usually mean that one can't let N-2e0 so that the Yy Gubecome com-
ON Caw'¥F phallic
plete, and hence¥the intermediate Hamiltonian be arbitrarily close to

"

Incompleteness aside the above asqpinned on $§ﬁ§w, is anyway very
restrictive and to over tome it Bazley and Fox (Phys. Rev. 124, 483
(1961)) suggested a further truncation, this time of i{o . Namely
denoting the eigenfunctions$and eigenvalues of Hop by QQ? ard EiE)

we have

H,= 2 BD WX

L (49-3)
L :
whence we can introduce a truncated operator %fo according to
w (-]
(s} o o
‘J‘CL;;Z EE\Q;QKQSQ © Eln Z’(\}&XQ’\AE
12 k=L$) (49-4)
L ?
9 9
= ,;i‘ Cel— Bh) (IR | + Binm (49-5)
L'L—‘-

Evidently (Problem: Prove this)

: b LA
s b ¢ My < BL (48-6)

® Nl - gégiy‘ %Uf\ﬁ—s am Mv‘;m\uS bud™ o a¥dhy {f{/jwwv\)" )44‘4.{%? ‘6@"’\’\1}\&’ 0&,.'\/’U
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Bzley and Fox then use
ks 1/ L )
H = @5 + Vv (48-7)

as an intermediate Hamiltonian and show that its eigenvalues can be

N
found by finite procedures. The difficulty is that although we can® let
N~5A we cannot in general let U=»gp , the ?oint being that while in
writing (3) we took the customary license of using as d¢screte notation,
in (5) it is essential that the sum be a sum and not an integral since
if * involves an integral we are led to integral equations instead of

algebraic equations.

Miller (J. Chem. Phys. 42, 4305 (1965) then pointed out that%é%
‘!Qo g&aymib'ﬂm.FthC»¥$“4bﬂfa%&%bM
Fieg ‘Jf simply a function Ham e €m find those eigenvalues of the

4 by 2P o HOL‘-% Y  problem which are less than E{‘i,.\ by solving ouy

L»L , algebraic problem. Indeed the method is just a special case of
Cond Npt 087 00) A Wb €= BT,y

. 3 : 6 i

that of the previous section if one puts (bcﬁsqq, v . However again lack
D

of completeness of the discrete Y, prevents complete convergence. For

applications see the paper by Miller, and alSOQ?;nning, J. Chem. Phys.

)
46, 2442 (1967).

’/{ . , L,«0 .
If one applies perturbation theory to i with 'V as
the perturbation (Problem: Do this) then one finds the simple
and obvious results

A
L P . v
_3 e vy 2 LGt v @)l L e
K‘-‘a\ qugao JZL%\O - - i
e E ELM“”Ey

for © ¢ L+

~

For some discussion of such bounds see
Goodisman, J. Chem. Phys. 47, 2707 (1967).

s,



235

Bazley and Fox have suggested writing
¢ £ ;%;;75‘3« 1y 5 EQ‘EU %

Y o ] [ | 8 it
B W% - o)

and usivg- ﬁl“w/as fﬁ%}and W~y as V . TFormally

this overcomes the Cemvagpmw . problem ~ the eigenfunctions of
%%Lﬁp can be taken to form a discrete set, the eigenvalue
£% = AN being infinitely degenerate. However so far no

applications ‘§eams fo© have been made.

T

For one—~electron problems it is possible to overcome the
Convergamesa— problem in another way (See Walmsley and Coulson
Proc. Camb. Phil. Soc. 62, 769 (1966), Walmsley, Proc. Camb.
Phil. Soc. 63, 451 (1967)), namely éug treats the (negative)
energy as given and lets the potential strength be the eigen-
value. For a given T , the potential strength eigenvalues
are then all discrete for a one-electron problem and one is
in business. (Problem: What happens with more than one
electron?)

R ———

The procedures discussed in this section all require that.
one know the uﬁ? . However if ™ is a molecular problem
and s involves several centers of potential then we can't
meet the requirement. In these circumstances Bazley and Fox
(J. Math. Phys. 4, 1147 (1963)) suggested a further truncation
which we will illustrate using Hi% as an example. Then

.. ., xﬁi - i
%:; w% v ‘i;}t Tﬂiﬁ

L DN C A L

Now YA and W9 are hydrogenic on centers A and B respectively
and one knows all about §%L&h One now uses as an intermediate
Hamiltonian

Wb, o By

For applications see the Walmsley papers referenced above and
\\\ also Johnson and Coulson (Proc. Phys. Soc. 84, 263 (1964)). fj/
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50. Energy Dependent Truncation - The Method of Gay and Lowdin

In the previous sections we mentioned one set of circumstances under
which ) ‘%Vﬂ becomes soluble, namely if we can choose the Ek
so that W \gK can be written as a finite linear combination of the
discrete ‘3(5 (the Bazley "special choice'). Lowdin has pointed out
another, more flexible possibility and it has been investigated in detail
by Gay (Phys. Rev. 135, 4 1220 (1964)).

Namely suppose we introduce functions EK according to

(50-1)

R %o [y

\'

Wil

where EI’L is the eigenvaluevwe are seeking and where (remember thegk

are normalized)

(50-2)
Nea (%u, (8- 6D V7' (g, &) 5)

(CA W hY) R
Then one finds that for & not equal to an Eg 3 so that (%&E )
s N
exists, one can write the eigenvalue equation for 3*(”%’\[ as

(Problem: Derive this result)

N . et
g ~ 3 E (B e ¥ )/’UK g

K=3

If now we take the scalar product of (3) with Cfﬂa,« Ewa) §L we are

led to a set of N 1linear homogeneous equations for the quantities

< g'%) @.M!;»m EVL> &%&L)/AJV\
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]
and finally to the following equation for B (Problem: Fill in the

details)

b

(2] (5, oo &¥)v= Upm e X3S, 4 ég)@gré»yg@}so_zo

We can now write this more compactly and at the same time transcribe
it into any basis éﬁk derived from the ?\%by a non-singular linear
transformation if we note that since the ﬁg&Q were to be orthogonal,

(1) implies that
(B, (8- YN &5 Dap Lt

From which it follows that (4) can be written (Problem: Derive this

result)

(Y, T Gty BV g 8% Blo-E") Y ) \ np OO
The solutions of (5) will give us those quy which are not equal to
any Ei? . In addition one readily sees that with the substitution (3),
EZUL“Z QE{G Aoid &%§i, \K? for any <« ‘solve the eigenvalue
problem for §4@¥a\iﬁ 7
The main point now is that if Vs simply a function then (5)
contains no difficult-inverse operators and the game is simply to choose
a set of ?Q4 and calculate away. Further, there is no obvious problem
of convergence ~ the set of ﬁ%@) can be as complete as we are able
to handle computationally. However now several remarks must be made:
(i) (5) has the same form as (48-13) if in the latter we put

&4 . . = .
€=k . Now if this is at all a permissible value for & (if
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there are as many ¢~ below & as there are & ) then it is almost
certainly not the best choice and probably the worst. Thus as it
stands this procedire results in quite similar equations but in general
5 . ) bl .
is inferior to that of Sec. 4B as long as E is less than & .
Nevertheless we are considering 1t in some detail because of its
theoretical interest and also because when used in a diiferent way (see
Sec.S9Y ) the question of superiority and inferiority for energies below
€ remains unsettled.

(ii) The relation of the solutions of (5) to the ‘E&, is unclear

as it stands (this is often called the "ordering problem'}, the point
i 5 ) g 18

being that (47-4) does not apply since our I} now depends on the
particular eigenvalue in question, i.e. we have a different Hamiltenian
for each eigenvalue! One way to partially solve the ordering problem is
of course to solve (48-13) instead of (5). The solutions of (5) are
then the intersections of the solution curves of (48-13) as a function
of © with the straight line & =2 & . Then as long as these
intersections lie below € we would know how to interpret them. This
is of course an a postiori approach and certainly not very interesting
from the point of view of the Gay and Lowdin method itself.

However the situation is not hopeless. If we denote the Gay and

ae - '
Lowdin \'}T’ by W Ce 1’) then we could completely solve the ouz.éﬁmw%

problem a postiori if we could find the eigenvalues éZg‘fif(g) of
%%QA“ (&) when & is a parameter, since then (47-4) would apply to

wrED for all O and the eigenvalues of QEQDL‘ @F,?%ﬁjxﬁglﬁ
would be the interaction of the solution curves 2&%L)L§3 as a

'

7 (-, “
function of @ with the straight line c = § . Now in fact we



2
W

can't find

following a o

for all O it follows from (6) that

&L
point on & curve below the 5&%#; ()

Then since

=~ bt
tﬂp must be

curve. Hence we have

LAY

Thyg in particular if then 1¢ is & lower bound to E} .

iies sbove certain lowver levels

If in addition

in the orther divecrion. For further discussion

then we can sharpe

see Gay's paper; also Miller, J. Chem. Phys. 48, 530 (1968); Bazley and

Fox, Phys. Rev. 148, 90 (1966); end T. M. Wilson, J. Chem. Phys. 47,

4706 (1967).

y

Eq. (5) can also be written (Problem:

;
ad

£
-

congiscs of a single function

Suppose now that the se:
{; . Then we have

ot

constant whence it follows that

o
Ut
7
Ne]
—r
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Suppose now we can choose V' to be (remember is supposed
to be positive)

e b o
V= &y - &Y (50-10)
Wi a6 vanl, E"\\TM = o lovan wwwd Iy By
Then from (2) we have

©

Epp = Camy=V = (B = €%0) 1% 5 gt (50.1)

5 / % - -1
be a lower bound to & .

If now we put (3) into (1) we readily find the result
(Problem: Fill in the details)

N L %
E&L» = [\D’/ CEnsy ~ ) H"J’)

g L
- 50-12
- = E, (50-12)
(Y (Lt = ) )
we now note that from (y2.)
; L =
Zw\‘:,\ _gta F) (B fnn YY)
C 4\; CEns — @)3) (50-13)
Whence \/ will be positive provided that
( F ce b iy (50-14)
) Evvon ~\3) + ) AV :
\\\ and we have rederived the TKK lower bound. ///

51. The Lowdin Bracketing Function - One-Dimensional Form

o

If one introduces a complete discrete basis set dﬁ;} then the

problem of solving the Schrodinger equation

B= B



of solving the intind

e
Ut
frt
i
Y
-

Whence one has as the ' " for t

i -~ . ;
i 7 g e S
‘& - S (51-2)

e
4]

Now 1f one

dealing with a finite of equations anorher, and oftes

more efficient proceduve o

with-

out having te wmultiply oot
elimination? namely, one solives all but one of the equations (1) as

inhomogeneous equations for all the in terms of a single one
) ¥

say @@H@@ . Then the last equatioy

for Qé%ﬁ%ﬁ alone, whence the coef

the eigenvalue equation

g - ¥

Now with an infinite set of equations one can' t ol course caryy

out such a procedure sequentially, but

so called partitioning method. Nawmely we can break up the infinite

. P S e amn e ) _ cay s
matrix (ﬁ%m»&%#ﬂawﬁu} as follows, and now we will single out

N o g 3 5 3 & i = @ w 3
(sometimes we will call ir the rveference function) and we will assume

that @ y 1s normalized and is orthogonal to the remaining o

2 S &
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where “5L’ is an (ot -7 »(#-)) dimensional matrix etc. Similarly

we write the column vector Qk‘ﬁ) as
b, : "’r‘)
Cdoy>

where Qngqo is an (»~1)  element column vector. Then (1) becomes

WnoE )@ )+ By W) =p (51-3)

\ @, 4 =
Buy @y ¥ A+ (€ e Fo ) = p (514

The elimination procedure now consists in "solving"
he n procedu onsis n "solving" (4) for Q@%qa

in terms of Zh)\? namely
G ) = & (B )™ By, (& 3 (51-5)

If we now insert this into (3) the result is

{ - ®) - Buy W By b @, ) (51-6)

which if Ca%‘¥)'410 , yields the eigenvalue equation (equivalent to
(2))

e = \;n — W C-\rh,\,,__ =3 \\,\,)4 Q LY (51-7)

Following Lowdin (for a review see his article in "Perturbation

Theory and its Applications in Quantum Mechanics" C. H. Wilcox ed.



Ny
s
[

Wiley 1966) we now define the function

N

SLL) = 4y - Br Odu- £ ™ @y, 18

that is SQGCL} is the right hand side of (7) but with some "trial
energy" i., instead of © . One then has a solution of {7} when
equals—g—(ﬁ/) again. More graphically if we introduce an ‘gT ~% plane"
then we can say that the solutions to {7) are the intersections of the
graph of Zﬁ— = §@i) with the straight line ?iyr = £

Lowdin now observed that L&) is in fact a bracketing function

in that if & is an upper bound to some eigenvalue then
a lower bound and conversely. The proof follows from the observation
"that

éji? = - W @%gﬁfﬁ%§zgm <0
o £

%
Thus in the & - $. plane we have ‘
no L&D
AR
& £
\

| g
g ,/f s ETcE<E

Eisew vawe B =
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which proves the point. Note however that we again have an ordering
problem in that we in general don't know which eigenvalue is being
bracketed. However clearly if we know that € is a lower bound to EL
and if we find that ’54@) is < & then it follows that ';g“u;’) must be
a lower bound to E\) . Similarily if €. is a lower bound to Eg 5
and we find —}‘41)5& then we can say that »SC-Q@) is an upper bound to
E\ . We will discuss the situation for excited states in later
sections.

In the figure we have shown only a small section of the graph of
2_,"‘ = &Li’) . Actually one can quite easily see the qualitative
structure of the entire graph. Namely suppose, as we may, that the
functions &Z).nm diagonalize M  within the (@-\) dimensional basis
set. Then CHU«a.,.,Z\ﬁ@'z;‘f\ will be a diagonal matrix with diagonal

Af

elements Cguf &Y‘\ , the % being the diagonal elements of the
diagonal matrix W&y . Thus we see that »§=w’) will have poles at
those g‘,‘ for which the @@ms@g@f«% Wi don't vanish. Further we

note that As ‘El—» 0 ) Aley—s Bn so that o owiach vesnd

@V‘"&Ulﬁ/\ \Upl(ﬂ 6~ 'Fuﬂ \\v A T
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/ Problem: Using the above rederive the result that By
is an upper bound to E;

. /_%'l’
Problem: Using the above rederive the result that Ei
upper bound to - E

Gl

As we noted in the derivation, (7) does not determine the
E; ) whose associated wave functions are orthogonal to
. Now in our graphical APpward<, if we imagine varying
one Qma then clearly we Ipsie.. an intersection when Huwe =D
To connect with the first remark show that iw =0
implies that @{ (which is anyway defined to be orthogonal

to @‘% ) is an ’eigenf;@ction of ¥ . (Hint: Show first
that in general B®k= B, M * bl where » 1is some Y
\\\m‘tm‘bere Then show that Biwe=p implies N = o ) /

52, Some Rewritings of the Bracketing Function

In our previous work we often found it useful to split H’ into
H= Hot V 52~V

two parts and to treat the two parts rather differently. It will prove

convenient to do similar things here. We are interested in

Tm;;\ 2 2 \lty - W

(52-2)
which we now write as
~3 —
T\@b = C 2 \‘vﬂ\-w "“%0 LY ) \f% (52_3)
]
— AR VS K
= TO (") (52__4)

so that

~Y

p— ~ =3
TW‘@ = (; \0(4‘:7 — Vla'b> = (.—&"/‘” Tablgvb\g) T;L_jb (52‘““5)
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or alternatively

)
Toy= Vo, (= Vi Tow) (52-6)

Egqs. (5) and (6)mwhich yield two equivalent forms for’TQb5 can often

profitably be considered as the solutions of the equations

Tb\g"; Towo + Vo Vin, T‘»‘ﬂ (52-7)

and

Tt To T""“\JTU% g

Tows and Tw, are {0 =1) % 0-~1) matrices. It is very
convenient to introduce corresponding operators To and T defined
over all of Hilbert space. To do this we merely define Ton 5 Tow 5
Totsy > tw , S , Tpy to be zero. Then (7) and (8) can be

replaced by (Problem: Derive (9) and (10))

T = Tor ToVT (e

T To¥% TVIR (52-10)

whose "solutions' then yield two equivalent forms for ).

T= O=TW)™ T (52-110
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or

- - )
T= Ty G=vTH (52-~12)

. 9 . . . .
Following Lowdin we now introduce the "generalized reaction operator"

% according to
T= Ty + TotTe (52-13)
whence fPem (10) and (11) we can derive the two equivalent forms

N |
= v O—ToV) ' (52~14)

or

| _ N-Y
= G— v To) Vv (52-15)

(Probleﬁ: Derive (14) and (15). Hint: Note that even if A is an

. -3 - _ ~ k .
operator still O—-AY' = Ci=md (L =A34Y= 1k () -ay! A }
If further V;& exists then recalling that CABY = g aA—? we

see that “%Q‘B takes a very simply form, namely
=3
e vt (= Te) -
whence

(52~16)
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Some other useful relations are the following: From (14) we

have

2 VoV
6“‘ Vox & (52-17)

while from (15) we have

L= V+ vt (52-18)

By multiplying (9) by V from the right, and (18) by Tg from the left
and comparing the results we then find that (Problem: Derive this

result)

TV= ETb *?

(52-19)

while multiplying in the other order we find that (Problem: Derive

this result)

NG Y = 'kaT\o

(52-20)

We now introduce the bracketing operator Fﬁ 5 By being the bracketing

function 5’ .

Y= Ha by T (52-21)

Using the preceding relations we can now write it in terms of 3{0 and

{: as follows (Problem: Derive (22))

Ea (Ror Ho Tho D + (T E Qrfty T) (52-22)
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Whence the bracketing function becomes

Fo U, T T 33 FQrthTs) £ rtle)

., @ + (e, € ® 0 (52-24)

—,
where

F o= Qr Tole) ¥, (52-26

53. Bracketing Functions for Intermediate Hamiltonians

Having developed all this formalism we must now point out that as
?wzéa¥v5$1 y&%&}éﬁ“ if W dis a realistic atomic or molecular Hamiltonian
then in fact we can't exhibit & new can we calculateﬁ@ However we will

‘now show that if 4 is one of the intermediate Hamiltonians discussed

earlier then we can calculate ga's. Now as a way of dealing with inter-

mediate Hamiltonians the bracketing function is probably not of enormous
ey Rove W Caas YT nlh (6, lulpw )

interest — the%e may be circumstances in which one would be satisfied

with lower bounds to the B¢ (which then are still lower boundsto the

(™

Ex, )}, alsc the graphical approach may on some cccasions be a useful

P .

.5,
one for finding the %ﬁ E?See the paper by T. M. Wilgon (J. Chem. Phys.

47, 4706 (1967)) for some related comment%zg More interesting is the
fact that, as we will discuss in the next section, almost all the tech=

niqueswhich have been used to approximate %“ for a realistic
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can be seen as the use of an exact S“ for some intermediate Hamiltonian
HT“ (a point which is not made explicitly in the literature but which,

as I have learned via private communications from T. M. Wilson and from

0. Goscinska, has been realized by some of the practitioners).

Thus we will now apply the preceding formulae to o instead of

A
‘o W, ;F:or ‘;,e{o we will now write Eﬂp

Thvs we can take over all the preceding formulae by simply introductin%,

and for V we will Agﬂﬂbe\{di ;

the superscript XL at appropriate places. Further we will suppose that

the reference function Aﬂ is an eigenfunction of ﬁ’»g ' , for example

L\_,Ul .
( .
ﬂl q’b’j—a E‘QE WO’L
D —

Y =
(53-1)

This has the effect of simplifying things QUV\%'\U/\@%, since then

T,
Tt TR o g T, % =o (53-2)

- ‘ —

and therefore

—

F- »

whence from (52-24) we have

gy ~ 0L 0L r 3
e N S GRS (53-3)

/ b :
Note that if one is using 'S‘ to determine exact eigenvalues a‘p@l
then the choice of @, is irrelevant (except that one gets no
information about eigenvalues associated with eigenfunctions
orthogonal to &l ). On the other hand if one is going to



then the quality of the bounds can
e

tte. of

We now consider several of the special in which
we discusse

(1) Q - L

considered by Miller in his

Lyoo
. s & ¥ S
To find %= we must solve

3 i;v,.i} - W

i
£

where

i

To

(53-5)

/ e itne: more chat from (2.2 16 SN

ProbTen, Derlve {5). Hint: Note that ii i
3 if t’i? (?‘Y P are B
the elgmnfunctionb of K% , then
Qg{_} i .
a2 N 9

Ho=

" b £~B¢ /

By a little rearranging}(A) with (5) can be written in the form

. . e 7
where A and the Bi are known functions. LI now g
exists, which if % is positive will be the case if
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5 ) o
& < Bugy (53-8)

then (7) can replaced by

-

t L“(’Q; a >

b, W24 ER™

c?
» N

\

where now a and the bi are known functions. If now we take the
scalar product with L\'; we will have a set of inhomogeneous equations
for the L\-}"" g e w,®) from which, in particular we can
determine (Q’f’) e @7 , the quantity of interest. (Problem:
Fill in the details.)

/

Note that if V/ is positive then from (52-12) we can

write
= v T <
. 5‘ I v ) v ) ! ) /
o &
(ii) \/l ~ N N but we leave 349 unspecified for the
oL ) P : o0
moment except to assume that e \¥\ with eigenvalue €, |,

T ~
i.e. we assume that g‘eu Q,‘O:‘- =,7 q'—,V .

To find % we must solve

T _ N N T, 1
+ = \/ = \J T, & (53-9)

If one now makes the ansatz

E M2

o T
e % v 15 b <3V (53-10)
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¢ I e
i - Ly .
where the T,  are numbersjﬁhen one finds that if V exists
(Probégm; Fill in the details) this will be the solution of (9)
provided that
N

1 SR T A W
- & ¢ v e .
ol * Star. ¥ Lo > AN (53-11)
which is a set of inhomogeneous equations which we can solve for the
4
%’KL,(ii we can calculate the coefficients. Three obvious cases in

PA [ 0 1 _ g
which we can do this are (a)'%{ﬁ = j#b (b) j¥o "j%; so that

bo)
3 SRR S
T, 2 Te= 2 @%iwm (53-12)

0
i:”-\/ é:’“Eb
but where the conditions of Bazley's special choice are satisfied, i.e.
where U§?§§“1 is a finite linear combination of the (really) discrete
9 ¥ . .. ) {
Q%@ . (e) f{ﬁ = 5{0 and the Gay-Lowdin choice §@F>€5£}QV‘@>iMJAﬁﬁ%

(Problem: Carry through the details in each case. Hint: For case

o e ¢ e
(c) note that (E-8) Ty= - h%f)<&%1
WRSTIE  puA RS G AW Am&ﬁwﬁmwxgﬂﬁgiﬁmﬁ%@
To” facilitate comparison with the work of Lowdin and his students

we note that since (kgce.ﬁ BY) =Swr it follows from (11) that tig

is the % % 'th element of the A xA/ matrix which is the inverse of
the AAA matrix with elements ( EK)"L\«fvﬁ‘Toﬁ»ﬁTf'l S ). With
thisrﬁ&h&v&}ﬂéh sy# Yesults can now be written very compactly as fellows:

Introduce the functions ENK according to

&\%; = (Tj’ ?;&

Then we have N

Sl 78 >t

bezy =Y
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Z
where fka= is the L 'th element of the VAN natrix which is the

inverse of the AN matrix with elements

a/\\&) Lv - Tpll\'\w>

Problem: We derived these results assuming that the \5&
are orthonormal. Show that in the present form the hy
can be an arbitrary basis by showing that the form of %:1 is
invariant to an arbitrary non-singular linear transformation
of the L\,g B

(A
Problem: Show that %:

Noo ¢l .
g, &2 (£-#) B> o €Tl (24

e 2) 1La2)

can be written

oL
where t=gb. is the L 'th element of the A##N npatrix
which is the inverse of the wa#M matrix with elements

(Gu, L CE-Hw) V7 (E-Fp) = (i-8) 0~ 903461 )]5,0)

. Show that in this form the E:k can be an arbitrary basis. //

As we described in Sec. 49, the Gay—Lgﬁdin method, involving as
it does an energy dependent truncation, has certain peculiar features
from the point of view of intermediate Hamiltonians. Not surprisingly
then its bracketing functions also has peculiar features. Namely since
\}&L' depends on Z , one cannot prove that glﬁl% is a decreasing
function of i, , and in fact it is not. This has the following
consequence. If we introduce again the operators V¥Q4AL&) of
Sec. 49 then we know that ¢ and ‘%&%&) will bracket an eigenvalue

of HGL{&) and therefore the smaller of them, being a lower bound
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. . &Ly . \ X ,

to some eigenvalue of Yels) , is alsov a lower bound to the
o . C e . i1 € s e
corresponding €¢ . Now since this is true for all & it is in
particular true for =& . So thus far there is nothing peculiar.
The peculiar %»eature is that é%@Lé.gﬁ , which determines the eigen-
values of W , does not in general yield the best lower bound.
What we mean is best seen graphically: Suppose we are dealing with
the ground state and that we know that £ < & and we find that
oA
the bracketing function from“intermediate Hamiltonian is less than
LA@‘WW ’kWé’W w s{a&ﬁ;} pa Cﬁ‘-\?"’\llﬁ\ L@,iji :Z‘*@ EE

then!

Usual Case

+
“
I
E must lie in the range 3{%94 g < E\/ and clearly we get

T, (el h BErnd dnedeevad

&

/ 3

Possible G.L. CaSeIV' e
e

s £ Tt v S Thae
[\Wﬁ}@ _‘@y@,?}l <fe EV
Whatha j;@%%@ﬁiw )™
Q@MﬂA E@yﬁ@'%ﬁ E% %“Q

Bl o ok Hv land

Lowen g gusnd.
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Thus by use of the bracketing functions one can improve on simply
s ) ) )
using k% (for some numbers see the references in the next section).
3{&&
How this approach compares with the use of is not clear at the
moment, hence our remark at the end of comment (i) following eq. (49-5).

1
i) H¥=> 4% v "= V

i 2
Thus we have for ouﬁgﬁxg

A a
_ &) \Ar XC}\J\ C&”Qg'aé”) i
“:HOM - RZ (W, e\ T e B (53-13 )
o) A
lp— €
. [
We now need to find the eigenfunctions of i{g . First we note that

A
any function orthogonal to all the C@&rﬂeﬁég is an eigenfunctiogj

with eigenvalue € To find the others we must then solve (47-8) but

1
with V2 O . If we denote the resultant eigenfunctions by ch and

gh ] g e B
the eigenvaluesby &, then evidently if we choose L¥, to be

we have (Problem: Derive this)

L
. T WEXW oy [

| 1
p ““’?7“*3431 (53-14)
Y22 E= EQ:N - ¢ L

WA ™
from which one can readily find &Z and 'S- (Problem: Fill in the

details.)

/// In a certain sense there is no ordering problem when dealing

with the bracketing function for a soluble W® - one can

simply solve W™ . However this is really going outside the

bracketing function approach. We have already indicated for .

the general case (soluble or not) an internal procedure for daalvwy
wes the ground state. This has been generalized to excited states

in the following way (we will merely sketch the‘results ﬁﬁngﬁ

refer to T. M. Wilson, J. Chem. Phys. 47, 3912 (1967)?”&instead

of partioning into 1\ ® Cn ~v) one partitions into

3(9 (0—q) Then instead of (51-7) one finds

i\
] E\,o%v — Voo =~ B CHwme\‘n‘s) l‘q\yaﬁlﬁl’) (53-15)
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and correspondingly we define an analogue to the functional

and ccrresponding¥y we define an analogue to the functional
relation o J‘é@} =D e
A

e
?Tﬁ . L s A o vl \1
% T Ve = Qaotd Bay (My-20 Hpe V =0 (53-16)

This is called "the Multivalued Bracketing Function'. For each

¥ there are roots, call them Zéf ,of (16). One can then
show the following. If = Hp3V where Y is positive
and « one uses as reference functions Chg,ﬁk?"“ **;

Heun!
b E;< £< Eéfm

then one can show that <£§> will be a lower bound to Ef
'
E@, < QL (53-17)

(See also Miller J. Chem. Phys. 48, 530 (1968)).

PP

Problem: Show that one can exhibit the multivalued bracketing
function recen o akaxe, in explicit form for
one or all of the k%j; descussed earller e Ehed vy Cann SR
Mol A badkdin, sptaston - W= BT H and ity Ry Mfnn G0m%
g Hangugh Shoq) Ml o ef, T = 2 090 Xag) /
B+t £.€O
54, Applications of the Bracketing Fucntion

As we have mentioned, in order to implement the bracketing approach
for atoms and molecules one is forced to approximations. In the last
section we discussed the approximation by means of intermediate
Hamiltonians. Lowdin and co-workers following a rather different ap-

Autls, Thota
proach were in fact led to essentially the samevapproximations to the
bracketing functions are in fact exact bracketing functions for various
H . (As remarked earlier this is not noted explicitly in the
literature though several authors (see for example T. M. Wilson, J. Chem.
Phys. 47, 3912, 4706 (1964), Wilson and Reid, J. Chem. Phys. 47, 3920

(1967) and references there) did point out that in various cases the

p
intersection points yvielded the eigenvalues of certain W ). Thus
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rather than detail‘Phﬁm,approach we will simply give a list of references

accompanied by brief comments. (Note that when we say "using'" we will

mean "in effect using''.) At the end we will mention a different

approach due toTlmal W%ng.

i

(Js

Lowdin, Phys. Rev. 139 A 357 (1965): The example is He. Lower
bounds were foun\d using \AIG'L.
Reid, J. Chem. Phys. 43, 5186 (1965): The example is an anharmonic
oscillator. Lower bounds to lower bounds were found by using a
Bazley special choice ‘+1t . The results of course are not as good
as solving ‘¥1 directly but there may be some numerical advantages
(see footnote 4a of the paper).
Choi and Smith, J. Chem. Phys. 43, S 189 (1965): The example is a
rigid rotator. Comments similar to those given in 2 apply.
Bunge and Bunge, J. Chem. Phys. 43, S 194 (1965): The example is a
double minimum potential. Comments similar to those given in 2 apply.
All the preceding calculations employed a single reference function.
Wilson Gmg, Reid, J. Chem. Phys. 47, 3920 (1967): Here the multi-
valued bracketing function was used and applied to Helium. Both
k}L7M and HﬁyLawere used. Complete regions of the £+; CE)
¢urves are plotted out and intersections found. In particular the
determination of optimal lower bounds in the k¥&i» case is con-
sidered in detail.

We now wish to briefly describe the method used by Pearl Wang

Chem. Phys. 48, 4131 (1968). With dﬂ: \-l"o we have, similarly to

(53-3)

51‘;‘- k& \o * Cq'\v) t-\_\a‘ﬂ)
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and the Lowdin approach was to get lower bounds to i§ by introducing

various operator lower bounds to i: . These QMMQAwM§“¢ihen, as we have
° 3 < 1‘

now said several times, . turn out to be Vawuwvs &’

What Wang did was to go back to

L (& T WTw)d
;&Tﬂ_ "y & )

and get a lower bound to j%’ by using lowetr bounds tot;\:ﬁ and in fact
y =
she replaced ‘T= by T~ . However her reference functions was not such

that T
(v— H) qz =0

so that her f%

¥ (jgb‘/ Lt u T 4D

is different from

3. 3 T Xl
§F - (& LarspiTiH01e)
(Problem: Prove this.) The problems she considered were (3;? and ..
.
3
and for B she used the Hamiltonian of Bazley and Fox mentioned at
the end of Sec. 48. Her results were quite good and in particular much

=
better than those furnished by the eigenvalues of ) 5





